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The axially a symmet r i c  problem of the temperature  of a rotating disk is examined; the solu-  
tion is dependent on polar coordinates and time. The steady temperature  field in the disk 
following transient  p rocesses  is analyzed. 

The machining of wood, fiber boards  and plast ics,  composition mater ia ls ,  precious stones, and a 
number of other  mater ia ls  by cutting is accomplished by an instrument,  the body (substance) of which is a 
flexible disk 0.5-5.5 mm thick. The exact operation of this instrument  depends on its dynamic stability, 
which is connected for the most  par t  with the presence of unfavorable thermal s t r e s se s  in the periphery 
of the disk. The unfavorable tempera ture  s t r e s se s  ar ise  as a consequence of unequal heating of the disk 
along a radius caused by location of the heat source in a res t r ic ted  a rea  of the disk per iphery and the in-  
tensity of its cooling through heat  exchange with the surrounding medium. In o rder  to determine the t em-  
perature  s t r e s s e s  one must know the distribution law of the temperature  s t r e s ses  along the radius and 
along concentr ic  c i rc les  of the body of the instrument.  The temperature  distribution along the radius of a 
disk for the conditions of an axially symmetr ic  problem with a steady temperature  sys tem,  where one 
assumes  the condition that the heat acts equally along the entire peripheral  cylindrical surface of the disk, 
is examined in [1]. In this case an annular,  ra ther  than a solid disk is examined, for which the boundary 
condition T(r0, r t) = T O is assumed,  in connection with which its thermal res is tance in the radial d i r ec -  
tion is calculated to be close to 1100 t imes greater  than in the axial direction. The cor rec tness  of the 
given boundary condition was confirmed experimentally in [2], according to the data of which even for the 
par t  of a disk with a radius of 0.4-0.5 of the outer radius,  the temperature  is equal to the surrounding air  
temperature  T O . 

Heating of a rotating disk by a point source of heat was examined in [3]. However in [3] a stat ionary 
temperature  field was considered,  but t ransient  p rocesses  were not reflected,  although they do have a 
considerable in teres t  for a number of pract ical  cases .  In the f i rs t  place this involves the formation of 
local tempera ture  s t r e s ses  in the disk, sharp temperature  variat ion in the cutting a rea  of the disk, which 
leads to al terat ion in the metal s t ructure ,  etc. 

In the present  work the temperature  field is determined for a rotat ing c i rcu lar  disk, on the outer r im 
of which slides a point heat source.  The temperature  of the inner par t  of the disk is taken as constant and 
equal to the temperature  of the surrounding medium. 

The equation of thermal  conductivity in our case has the form 

t Or - - ~  -? . . . .  r Or + - -  ~ ~ ) T (r, 9, t ) - -  jr(r, % t)--To] 
(1) 

OT (r, + ~ Q(r, % t)= 9, t) 
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The solution should satisfy the initial and boundary conditions 

T (r, ep, O)= T o, 

T(r o, % t )=T0,  

C2) 
(3) 

and also the condition of periodicity in 
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T(r, ~, t)= T(r, r + 2kn, t) (k = I, 2 . . . .  ). (4) 

Changing to a new v a r i a b l e  

u(r, % t ) = T  (r, % t ) - - T  o , (5) 

we seek  a so lu t ion  in the f o r m  

n Z ~ 0  

The p e r i o d i c i t y  in r i s  s a t i s f i e d  fo r  i n t e g e r s  m,  whi le  the n u m b e r s  # m  a r e  d e t e r m i n e d  f r o m  the boundary  
condi t ion (3), f r o m  which i t  fo l lows that  

J.~ b% = O, (7) 

w h e r e / ~ m r 0 / R  i s  the (m + 1)-th r o o t o f  this  equat ion.  We subs t i tu te  (6) and the ana logous  expans ion  of O(r ,  
~o, t) in Eq.  (1): 

,2hi o ,8, du,. (t) + ~ ~+ ~ um (t) = T Q~ (t) 
dt 

The so lu t ion  of (8), s a t i s f y i n g  the in i t ia l  condi t ion u m (0) = 0, t akes  the f o r m  

t 

t cc Qm (t') exp [ - -  %~ (t - -  t')] dF, .m (t) = - ~ .  

0 

(9) 

w h e r e  

~ m = ~  + - ~  

D e t e r m i n i n g  the expans ion  coe f f i c i en t s  Om(t  ) and subs t i tu t ing  t h e m  in (9) we obtain  for  u(r ,  ~, t) the e x p r e s -  
s ion 

t 

u (r, ~, t) = - ~  dr' g~oSo if%x) exp [ ~  % (l - -  t')] 

0 

2 g  1 

x q(x ' ,  ~,  ~ ot , .x~xax 
xo 

+ 2 E ~ 2 , , j m  (pro x) cos rn~ exp [--  ~2,~ (t - -  t')] 
t n ~  1 

2 ~  I r 

Q( , ~ ' ,  . . . .  . • ~costn~'d~" 3' x' l)J, ,(l t , , ,x)xdx} 
0 X o 

(11) 

H e r e  x = r / R ;  x 0 = r0 /R , and 

~ = { [ ] . ~ (~ ,~ ) ]2 -s~_ l (~ ,~ , ) J~ ,~ , (~ , ) } - I  (m = o, 1, 2 . . . .  ). (12) 

To eva lua te  the i n t e g r a l s  e n t e r i n g  into (11) we use the method  p r e s e n t e d  in [4]. We r e p l a c e  the (d i sc re te )  
point  s o u r c e  of hea t  m o v i n g  cont inuous ly  a round  the p e r i p h e r y  of the disk by a point  s o u r c e  moving  d i s -  
con t inuous ly  f r o m  point  to point  

I 

Q(*, % oo 6(,~1) ZQ~6(~_~O6(t_tO. (13) 
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Here  i is the ordinal number  of the discontinuous source ,  I is the total number of tbese discontinuit ies,  
and 

Q~ -- Q/svno. 

where  n o is the number of revolutions per second of the disk, v is the number of d i sc re te  sources  included 
in one period,  and s = 2~rRb. 

F r o m  evaluation of the integrals  with respec t  to x ' ,  ~0', and t '  we obtain in place of (11) 
I 

u(r, ~, / )=  ~ ~ Q i  {~oJo(~o)Jo (~o - } ) e x p  [-- ,o (t - -  /i) ] 
i ~ l  

! 

+ 2~.j~(ix.)j.~(lxm-~-)cosm~tosm%exp[_,.(t_,,]}. (14) 

We fur ther  substitute ~o i and t - t  i in the form 

2~ i - -  1 % =  ~ i ,  t - - i ~ = ~  (15) 
'q , r  o 

and total with r e spec t  to i the sums in(14). We then replace the discontinuous source with the continuously 
moving point source ,  for  which we determine  the l imit  of the resul t ing express ion  at v --~ .% Finally we 
obtain the solution of Eq. (1) in the fo rm 

+2ZAmJrn(Ixm r~c~176 J ~bra sinmtot)]/.,]] 
: / l ~ I  

(16) 

H e r e  

A,,, --- a t ~ j ~  @~) %, 
R 2 ( ~  -f- m ~e~ (m = 0, 1, 2 . . . . .  ). (17) 

We introduce the d imensionless  t empera tu re  

T (r, q~, t ) -  To 
' [  : =  

Q/(2n~bL) 
Equation (16) is t r ans formed  to the form 

'; '= AoJo ~o 

t t l ~  l 

• (COS mtot m~ sinmtot )]  " ~b~ 

(IS) 

(19) 

Equation (19) desc r ibes  both the t rans ient  p roces s  and the steady tempera ture  field ar is ing af ter  i ts  comple-  
tion. 

We now examine the case in which one may ignore the t ransient  p rocesses .  We discard the par t s  in 
(19) which diminish with time. Fu r the rmore  we introduce the following substitution: 

cp = % + col, (2 0) 
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Fig. 1 Fig. 2 

Fig. 1. Dependence of dimensionless  temperature  on the angular 
coordinate of an a rb i t r a ry  chosen point of a s tat ionary disk. 

Fig. 2. Diagram of i so therms  in a s tat ionary disk. T 1 > T 2 > ~-3 (T 
is the dimensionless  temperature) .  

where q~0 is the angular coordinate of an a rb i t r a ry  point of the disk stat ionary with respect  to the source.  
Then we obtain f rom (19) 

The resul t  obtained may be interpreted in the following way. The stat ionary point heat source is 
located at the point with polar coordinates (1~, 0). A stat ionary temperature  ,field is established in planar 
coordinates satisfying the boundary conditions. The temperature  at the a rb i t ra ry  point of the rotat ing disk 
undergoes harmonic  oscillation, taking the periodic value T, unambiguously determined by the coordinates 
of the corresponding point of the disk. The grea tes t  amplitude of oscil lat ion occurs  at the peripheral  points 
whose temperature  var ies  within the l imits  f rom T(R, 0) to T(R, ~) (highest and lowest values, respectively).  
The amplitude of oscil lat ion dec reases  with a decrease  in r and at points with r = r 0 the temperature  is 
constant and equals T O = 0. 

For  the case of a s tat ionary disk (w = 0) we have 

r 

m ~ l  

The dependence of tempera ture  on q~0 and the i so therm in a s tat ionary disk are shown in Figs. 1 and 2. 

In the case of very  rapid rotat ion of the disk (w ~ )  we obtain f rom Eq. (21) 

The tempera ture  f ieldin this ease is axially symmetr ica l  since a constant temperature  is eatablished at 
the per iphery of the disk (the heat source is found simultaneously at all points of the outer r im of the disk). 
The i so therms  take the form of concentr ic  c i rc les .  

r and 

t 

r o and R 

b 

h 

Cg 

O(r, ~p, t) 

N O T A T I O N  

are polar coordinates;  
is the time; 
are the inner and outer  radii of the disk; 
is the disk thickness; 
is the thermal conductivity coefficient; 
is the heat exchange coefficient; 
is the thermal  diffusion coefficient; 
is the heat generated per unit time per  unit volume of the disk; 
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T~r, 9, t) 

To 

J m  
5(x) 

1. 

2. 
3. 
4. 

is the t empera tu re  at an a rb i t r a ry  point of the disk; 
is the t empera tu re  of the surrounding medihm; 
is tbe angular  veloci ty of the disk; 
is a Besse l  function of the f i r s t  kind of the o rde r  m; 
is the delta function. 
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